Advanced Algebra 2-2×2 determinants

$$
\begin{aligned}
& \text { If }\left|\begin{array}{ll}
a & b \\
c^{<} & d
\end{array}\right|=a \cdot d-c \cdot b, \text { find } \ldots \\
& \text { 1. }\left|\begin{array}{cc}
5 & 3 \\
2 & -4
\end{array}\right| \\
& =5(-4)-(3)(2) \\
& =-20-6 \\
& =-26 \\
& \text { 3. }\left|\begin{array}{cc}
5 & 2 \\
2 & -20
\end{array}\right| \\
& \begin{array}{l}
=5(-20)-(2)(2) \\
=-100-4 \\
=-104
\end{array} \\
& \text { 2. } \begin{aligned}
& \left|\begin{array}{cc}
2 & 3 \\
-20 & -4
\end{array}\right| \\
= & 2(-4)-(3)(-20) \\
= & -8+60 \\
= & 52
\end{aligned} \\
& \text { 4. }\left|\begin{array}{ll}
-4 & 2 \\
-5 & 3
\end{array}\right| \\
& =(-4)(3)-(2)(-5) \\
& =-12+(-10) \\
& =-2
\end{aligned}
$$

Solving 2x2 Systems Using Cramer's Rule

You can use determinants to solve a system of linear equations. The method, alled Cramer's rule and named after the Swiss mathematician Gabriel Cramer 1704-1752), uses the coefficient matrix of the linear system.

$$
\begin{aligned}
a x+b y & =e \\
c x+d y & =f
\end{aligned} \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

LINEAR SYSTEM

CRAMER'S RULE FOR A 2×2 SYSTEM

Let A be the coefficient matrix of this linear system:

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

If $\operatorname{det} A \neq 0$, then the system has exactly one solution. The solution is:

$$
x=\frac{\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right|}{\operatorname{det} A} \text { and } y=\frac{\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|}{\operatorname{det} A}
$$

Solving 2×2 Systems
Example 1 - Watch- do not take notes yet...

$$
\begin{aligned}
& 7 x-5 y=11 \\
& 3 x+10 y=-56 \\
& D=\left|\begin{array}{ll}
7 & -5 \\
3 & 10
\end{array}\right| \quad D_{x}=\left|\begin{array}{cc}
11 & -5 \\
-56 & 10
\end{array}\right| \quad D_{y}=\left|\begin{array}{cc}
7 & 11 \\
3 & -56
\end{array}\right| \\
& =7(10)-(-5)(3)=11(10)-(-5)(-56)=7(-56)-(11)(3) \\
& \begin{array}{lll}
=70-(-15) & =110-280 & =-392-33 \\
=85 & =-170 & \\
=-425
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{D_{x}}{D}=\frac{-170}{85}=-2 \quad \text { check } \\
& \text { check ? Check } \\
& y=\frac{D_{y}}{D}=\frac{-425}{85}=-5 \\
& (-2,-5) \\
& \begin{array}{rlr}
-14+25 & =11 & -6-50 \\
11 & =-56 \\
& -56 & =-56 \mathrm{~V}
\end{array}
\end{aligned}
$$

Solving 2×2 Systems
Example 2- What needs to be done first???? Put in STANDARD

$$
x=\frac{D x}{D}=\frac{-14}{-7}=2 \quad y=\frac{D y}{D}=\frac{7}{7}=-1 \quad(2,-1)
$$

check (ORIGINAL) Check

$$
\begin{array}{lc}
y=-2 x+3 & 5 x+6 y=4 \\
-1 \stackrel{?}{=}-2(2)+3 & 5(2)+6(-1) \stackrel{?}{=} 4 \\
-1=-4+3 & 10-6=4 \\
-1=-1 \Omega & 4=4
\end{array}
$$

